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Asymptotic Theory for Laminated Piezoelectric
Circular Cylindrical Shells

Zhen-Qiang Cheng¤ and J. N. Reddy†

Texas A&M University, College Station, Texas 77843-3123

An asymptotictheory is presented for laminatedpiezoelectric circular cylindrical shells under electromechanical
loads. The three-dimensional coupled electromechanical problem reduces to a hierarchy of two-dimensional equa-
tions, which can be solved systematically. The proposed theory is illustrated by considering two example problems.
Numerical results show excellent agreement with an available exact solution and also provide some suggestions in
establishing new two-dimensional piezoelectric shell models.

I. Introduction

R ECENT rigorousstudies1¡9 have revealedsome de� cienciesin
manyexistingtwo-dimensionalpiezoelectricplatemodels.For

example, the de� ection distribution is not nearly constant through
the thickness of a thick plate under thermal and/or electric loads.
The in-planeelectric � eld components are not negligible in the case
of unequal normal electric displacementson the top and bottomsur-
faces of a plate. In contrast, the in-plane electric � eld components
may be larger in magnitude than the transverse electric � eld com-
ponent in this case. The electric potential is piecewisely smoothly
(or zigzag) distributed through the thickness of a laminated piezo-
electric plate. Accordingly, more ef� cient and reliable theories to
improve these assumptions have been desirable for analyzing the
electromechanicaland thermomechanicalproblems.

In recent developments,asymptotic theories have been proposed
for elastic plates,10¡15 piezoelectric plates,5¡9; 16;17 and circular
cylindrical elastic shells.18 An important result is that solutions of
the three-dimensionalequations may be generated by solving two-
dimensional equations hierarchically.There is no need for making
any assumptions a priori. The present paper intends to establish an
asymptotic theory for laminated circular cylindrical piezoelectric
shells.

II. State-Space Equations
The linear constitutiveequations of a piezoelectricmedium are19

¿ D c : S ¡ eT ¢ E; D D e : S C k ¢ E (1)

where ¿ and S are the symmetric stress and strain tensors; D and E
the electric displacement and the electric � eld vectors; and c, e, and
k the elastic, piezoelectric, and dielectric moduli.

The equations of equilibrium and the charge equation in the ab-
sence of body forces and electric charge density are given in the
cylindrical coordinate system fr; µ; xg as

r¡1.r¿rr /;r C r ¡1¿rµ;µ ¡ r ¡1¿µµ C ¿r x;x D 0

r ¡2
¡
r 2¿rµ

¢
;r

C r¡1¿µµ ;µ C ¿µ x ;x D 0

r¡1.r¿r x /;r C r¡1¿µ x;µ C ¿x x ;x D 0

r¡1.r Dr /;r C r ¡1 Dµ;µ C Dx;x D 0 (2)

The strain-displacementrelations and the electric � eld-potential
relations are
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Srr D ur;r ; Sµµ D r¡1uµ;µ C r¡1ur ; Sx x D ux;x

2Sr x D u x;r C ur;x ; 2Srµ D r ¡1ur;µ C r
¡
r ¡1uµ

¢
;r

2Sµ x D uµ ;x C r¡1ux ;µ ; Er D ¡’;r

Eµ D ¡r¡1’;µ ; Ex D ¡’;x (3)

Consider a circular cylindrical piezoelectric panel of uniform
thickness h and inner radius r0 , as shown in Fig. 1. The inner sur-
face of the panel is designated to be the reference surface. Let the
circumferential, axial, and normal length parameters be x1 D r0µ ,
x2 D x , and x3 D r ¡ r0 , respectively.

Hereafter, a comma followed by a subscript i denotes the partial
derivative with respect to xi , and a repeated index, unless speci� ed
otherwise, implies summationover the rangeof the indexwith Latin
indices ranging from 1 to 3 and Greek indices from 1 to 2.

For monoclinic piezoelectricmaterials with re� ectional symme-
try in surfaces parallel to the surfaces of the circular cylindrical
shell, the following state-space equation may be formulated from
Eqs. (1–3):
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where " D h=a, a is the circumferential length of the inner surface,
and

F D [u1 u2 ¿33 D3]T ; G D [¿13 ¿23 u3 ’]T (6)

The 4 £ 4 diagonal matrix QA is denoted as QA D diag[0, 0, 1, 0]. QF

and QG , as well as their inverses Q¡1
F and Q¡1

G , are 4 £ 4 diagonal
operator matrices de� ned by

QF D diag[r Qr ¡1; Q; r¡1 Qr; r¡1 Qr ]

QG D diag[r¡2 Qr 2; r¡1 Qr; Q; Q] (7)

Q¡1
F D diag

£
r@zr

¡1; @z; r¡1@zr; r¡1@zr
¤

Q¡1
G D diag

£
r¡2@zr

2; r¡1@zr; @z; @z

¤
(8)

where

Q.¢ ¢ ¢/ ´
Z z

0

.¢ ¢ ¢/ dz; @z ´ @

@z
(9)

and we have used the scaled thickness coordinate z D x3=". Thus, z
varies from 0 to a as x3 goes from0 to h. The 4 £ 4 operatormatrices
A and B contain the differential operator @® ´ @=@® and depend on
z as
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A D
µ

I ¡r0r ¡1J1@1 ¡ J2@2

¡r0r¡1JT
1 @1 ¡ JT

2 @2 r 2
0r ¡2K11@11 C r0r¡1.K12 C K21/@12 C K22@22

¶

B D
µ

¡r 2
0r ¡2L11@11 ¡ r0r¡1.L12 C L21/@12 ¡ L22@22 ¡r0r¡1M1@1 ¡ M2@2

¡r0r¡1MT
1 @1 ¡ MT

2 @2 N

¶
(10)

The nonzero elements of the matrix P are only on the third row:

P3! D ."r/¡1
¡
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¡1L1!
11 @1 C L1!

12 @2

¢

P33 D ."r/¡1 M11
1 ; P34 D ."r /¡1 M12

1 (11)

As de� ned in previous work,5¡9 the matrices I, N, J¯ , M¯ , K¯½ , and
L¯½ are only related to the material properties:
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Other notations include ´ D ."r /¡2 L11
11 and the Kronecker delta ±!¯ .

III. Asymptotic Theory
To establish an asymptotic theory of successive approximations,

the functions F and G are expanded in terms of the small thickness
parameter " as

µ
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G

¶
D
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n D 0

"2n

µ
"f .n/

g.n/

¶
(13)

Substituting Eq. (13) into Eq. (4) leads to the recurrence relations
as

Q¡1
G g.0/ D 0; Q¡1

G g.n C 1/ D B f .n/ ¡ PT g.n/

Q¡1
F f .0/ D A g.0/; Q¡1

F f .n C 1/ D A g.n C 1/ C P f .n/ C ´ QA g.n/

.n ¸ 0/ (14)

The electromechanical loads on the inner and outer surfaces of
the circular cylindrical panel are scaled to be

¿®3.x½ ; 0/ D "2q¡
® .x½/; ¿®3.x½ ; a/ D "2qC

® .x½/ (15)

¿33.x½ ; 0/ D ¡"3q¡
3 .x½ /; ¿33.x½ ; a/ D ¡"3qC

3 .x½/ (16)

’.x½ ; 0/ D "2V ¡.x½/; ’.x½ ; a/ D "2V C.x½/ (17)

where q§
® , q§

3 , and V § are the tangential tractions, the normal pres-
sures, and the electric potentials applied on the shell surfaces.

Integrating Eqs. (14) with respect to z and consideringEqs. (15–

17) for the bottom surface yields

Fig. 1 Geometry of a circular cylindrical shell.
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The basicunknownsare the mechanicaldisplacementsand the elec-
tric displacement at the reference surface z D 0 of the shell:
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i ´ u.n/

i .x½ ; 0/; D.n/

0 ´ D.n/

3

¡
x½ ; 0C

¢
(19)

These unknowns remain to be determined such that the conditions
(15–17) for the tractions and the electric potential on the outer
surface z D a are satis� ed.

According to Eqs. (18), f .n/ and g.n/

3 can be alternatively written
as
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and where an uppercasesubscript L takes the values from 1 to 4 and
the implicit summation convention applies as usual.
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When the integral operator is denoted

NQ.¢ ¢ ¢/ ´
Z a

0

.¢ ¢ ¢/ dz (22)

the following matrix equation is derived through Eqs. (21) and
the traction and electric potential conditions (15–17) for the outer
surface:

QR QX.n/ D ±n0Y ¡ RH.n/ C T QH .n/ (23)

where

QX.n/ D
£
U .n/

1 U .n/

2 U .n/

3 D.n/

0

¤T
(24)

The expressions of the components of the operator matrices QR, R,
and T are given in the Appendix.The componentsof Y on the right-
hand side of Eq. (23) contain the electromechanicalloads as
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Equation (23) is the � eld equation established in the asymp-
totic theory. The unknowns (24) of each order remain to be solved
with speci� ed edge conditions. Because H.0/ D 0, QH .0/ D 0, and Y
is known as in Eq. (25) a priori, the leading-order unknowns can
be determined from the leading-order� eld equation. Then H.1/ and
QH .1/ can be obtained from Eqs. (20) and (21). Such a procedure

may be continued to solve higher-orderunknowns.Because the op-
erator matricies QR, R, and T involved in Eq. (23) do not change
their forms in the � eld equations of any order, this makes the so-
lution procedure easier. On the basis of this asymptotic theory, a
numerical method may be developed to successivelysolve the two-
dimensional equations with the same operator matrices and then to
generate three-dimensionalsolutions.

IV. Examples
A circular cylindrical panel with central angle 8 and axial length

L2 is consideredin the following illustrativeexamples.The nonzero
electromechanicalloads are only applied on the outer surface as

qC
3 D OqC

3 sin l1x1 sin l2x2; V C D ¡ OV C sin l1x1 sin l2x2 (26)

where

l1 D ¼=a; l2 D ¼=L2; a D r08 (27)

and a quantity with a superimposed hat denotes the amplitude of
the correspondingphysical quantity. The mechanical and electrical
boundary conditions for simply supported edges

u2 D u3 D ¿11 D ’ D 0 at x1 D 0; a

u1 D u3 D ¿22 D ’ D 0 at x2 D 0; L2 (28)

can be satis� ed by assuming
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The physical quantities are nondimensionalizedby

Nui D Ou i=P L1; N¿i j D O¿i j

¯
Pc¤

N’ D e¤ O’
¯

P L1c¤; NDi D ODi

¯
Pe¤ (30)

where either P D OqC
3 =c¤ for applied load qC

3 or P D OV C.e¤=L1c¤/
for applied potential V C. L1 D R8 and R D r0 C h=2 are the
circumferential length and radius of the middle surface.

Three different materials are used to examine the present asymp-
totic theory. They are polyvinylidene� uoride (PVDF1 and PVDF2)
and lead zirconate titanate (PZT-4), and their material moduli are
given in Table 1.20¡22

The present results for an in� nitely long single-layer circular
cylindrical (PVDF1) piezoelectric panel (8 D ¼=3) are compared
with the available exact solution20 in Tables 2 and 3, for which
c¤ D 2 GPa and e¤ D 0:06 C/m2 have been taken. Selected results
for the radius-to-thickness ratio R=h D 4 and 10 are given. The
leading-order, � rst-order, and second-order solutions are listed in
comparisonwith the convergedhigher-ordersolutionthat is accurate
to four signi� cant digits. The converged orders are shown to be the
� fth order and third order for R=h D 4 and 10 under the mechanical
load, and � fth order and fourth order for R=h D 4 and 10 under
the electric load. Thus, subsequent higher-order solutions are not
necessary. As observed, the converged solutions are in excellent
agreement with the exact results. The present asymptotic theory
provides fast convergence for the considered example, for which
the second-order solution already gives good approximations.

The second example presents the electromechanical analysis
of a four-ply (0-deg PVDF2/PZT-4/90-deg PVDF2/PZT-4 starting
from the outer ply) laminated circular cylindrical panel (8 D ¼=3,

Table 1 Material moduli

Moduli PVDF1 PZT-4 PVDF2

c1111, GPa 3 139 238.24
c2222, GPa 3 139 23.6
c3333, GPa 3 115 10.64
c1122, GPa 1.5 77.8 3.98
c1133, GPa 1.5 74.3 2.19
c2233, GPa 1.5 74.3 1.92
c2323, GPa 0.75 25.6 2.15
c3131, GPa 0.75 25.6 4.4
c1212, GPa 0.75 30.6 6.43
e311 , C/m2 0.0285 ¡5.2 ¡0.13
e322 , C/m2 ¡0.0015 ¡5.2 ¡0.145
e333 , C/m2 ¡0.051 15.1 ¡0.276
e223 , C/m2 0 12.7 ¡0.009
e113 , C/m2 0 12.7 ¡0.135
k11=ka

0 106:2=k0 1475 12.5
k22=ka

0 106:2=k0 1475 11.98
k33=ka

0 106:2=k0 1300 11.98

aHere k0 D 8:854185 pF/m.

Fig. 2 Through-the-thickness distribution of the de� ection for a four-
ply laminated circular cylindrical panel under electric load ( U = ¼/3,
R/h = 20, and L1/L2 = 1).
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Table 2 Comparison of the present results with exact solution for an in� nitely long
single-layer piezoelectric circular cylindrical panel under mechanical load ( U = ¼/3)

Order Nuµ .0/ Nur .h=2/ N¿µ µ .0/ N¿rµ .h=2/ N’.h=2/ NDµ .h=2/ NDr .0C/

R=h D 4
0 ¡7.479 ¡11.22 15.28 0 0 0 0.512
1 ¡7.990 ¡12.90 15.58 ¡2.507 0.010634 ¡1.971 1.077
2 ¡8.000 ¡12.90 15.58 ¡2.495 0.009260 ¡1.716 1.017
5 ¡8.000 ¡12.90 15.58 ¡2.495 0.009331 ¡1.729 1.020
Exact20 ¡8.000 ¡12.90 15.58 ¡2.495 0.009331 ¡1.730 1.020

R=h D 10
0 ¡76.94 ¡164.9 82.77 0 0 0 1.1043
1 ¡78.03 ¡168.8 83.03 ¡5.897 0.02496 ¡4.626 0.7900
2 ¡78.08 ¡168.9 83.04 ¡5.893 0.02444 ¡4.531 0.7829
3 ¡78.08 ¡168.9 83.04 ¡5.893 0.02445 ¡4.531 0.7830
Exact20 ¡78.08 ¡168.8 83.04 ¡5.893 0.02445 ¡4.531 0.7830

Table 3 Comparison of the present results with exact solution for an in� nitely long
single-layer piezoelectric circular cylindrical panel under electric load ( U = ¼/3)

Order Nuµ .0/ Nur .h=2/ N¿µ µ .h/ N¿rµ .h=4/ N’.h=2/ NDµ .h/ NDr .0C/

R=h D 4
0 ¡1.1937 ¡0.3979 0 0 0 0 286.7
1 ¡0.5274 0.4973 ¡0.3043 0.00000 ¡0.5313 164.8 260.1
2 ¡0.5519 0.4752 ¡0.3341 0.02504 ¡0.4959 164.8 261.8
5 ¡0.5511 0.4758 ¡0.3315 0.02569 ¡0.4978 164.8 261.7
Exact20 ¡0.5512 0.4760 ¡0.3314 0.02569 ¡0.4978 164.8 261.7

R=h D 10
0 ¡2.997 ¡0.9992 0 0 0 0 663.1
1 ¡2.207 0.6386 ¡0.1360 0.000000 ¡0.5125 176.5 653.3
2 ¡2.210 0.6340 ¡0.1409 0.004087 ¡0.5069 176.5 653.4
4 ¡2.210 0.6340 ¡0.1408 0.004172 ¡0.5070 176.5 653.4
Exact20 ¡2.210 0.6340 ¡0.1408 0.004172 ¡0.5070 176.6 653.3

Fig. 3 Through-the-thickness distribution of the electric potential for
a four-ply laminated circular cylindrical panel under electric load
( U = ¼/3, R/h = 20, and L1 /L2 = 1).

R=h D 20, and L1=L2 D 1). The panel has equal ply thickness and
� nite axial length. The dimensionless values are also de� ned by
Eq. (30), where c¤ D 1 GPa and e¤ D 1 C/m2.

Figure 2 shows the through-thicknessdistribution of the de� ec-
tion of the circular cylindrical panel under the electric voltage. The
distribution is approximately piecewise linear through the entire
plate thickness. More speci� cally, the de� ection is approximately
constant through the thickness of each PZT-4 layer, whereas it is
approximately linearly distributed through the thickness of each
PVDF2 layer.

The through-thicknesselectricpotentialfor the laminatedcircular
cylindrical panel under the electric load is presented in Fig. 3. It is

Fig. 4 Through-the-thickness distribution of the amplitude ratio of
the circumferential to transverse electric � eld components for a four-
ply laminated circular cylindrical panel under electric load ( U = ¼/3,
R/h = 20, and L1/L2 = 1).

appropriateto make an assumptionof a piecewise lineardistribution
of theelectricpotentialthroughthe thicknessof a circularcylindrical
shell in the case of an applied electric voltage.

As revealed earlier in the plate analyses,1; 5¡8 the assumption of
negligible in-plane electric � eld components is not valid in some
cases. That is because the in-plane electric � eld components, when
comparedwith the transverseelectric � eld, are of the orderof the re-
ciprocalof the plate thicknessparameter.The numerical result given
in Fig. 4 for the through-thickness distribution of OEµ = OEr clearly
demonstrates that such a conclusion also applies to the circular
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a)

b)

Fig. 5 Through-the-thickness distribution of the de� ection for a four-
ply laminated circular cylindrical panel under a) mechanical load and
b) electric load ( U = ¼/3, R/h = 20, and L1/L2 = 1).

cylindrical panel. Although the in-plane electric � eld component
is negligibly small in three layers, it is more signi� cant than the
transverse electric � eld component in one PZT-4 layer. The discon-
tinuity of the curve through the thickness is due to the discontinuity
of the transverse electric � eld component.

The through-thickness distributions of the transverse shear and
normal stresses are given in Figs. 5a and 5b for the cases of ap-
plied mechanical load and applied electric load, respectively. The
linear superposition principle applies to the problem so that results
due to combined loads may be obtained through respective solu-
tion due to simple loading. Therefore, according to Figs. 5a and
5b, the interfacial shear stresses ¿rµ and ¿r x can be reduced in a
controlled manner by properly applied electromechanical loads to
prevent possible premature shearing delamination.

V. Conclusions
An asymptotic theory has been presented for laminated cir-

cular cylindrical piezoelectric shells in the framework of three-
dimensional electroelasticity.Solutions can be obtained using a re-
currenceprocedureto desiredaccuracyfor the interiorsof the shells.
The present results show excellent agreement with the available
exact solution. The graphical results provide guidance for making
appropriate assumptions in developing new theories.

Appendix: Expressions of the Operator Components
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