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Asymptotic Theory for Laminated Piezoelectric
Circular Cylindrical Shells

Zhen-Qiang Cheng* and J. N. Reddy’
Texas A&M University, College Station, Texas 77843-3123

An asymptotictheory is presented for laminated piezoelectric circular cylindrical shells under electromechanical
loads. The three-dimensional coupled electromechanical problem reduces to a hierarchy of two-dimensional equa-
tions, which can be solved systematically. The proposed theory is illustrated by considering two example problems.
Numerical results show excellent agreement with an available exact solution and also provide some suggestions in
establishing new two-dimensional piezoelectric shell models.

I. Introduction

ECENT rigorousstudies' ~ have revealed some deficienciesin

many existing two-dimensionalpiezoelectricplate models. For
example, the deflection distribution is not nearly constant through
the thickness of a thick plate under thermal and/or electric loads.
The in-plane electric field components are not negligiblein the case
of unequal normal electric displacements on the top and bottom sur-
faces of a plate. In contrast, the in-plane electric field components
may be larger in magnitude than the transverse electric field com-
ponent in this case. The electric potential is piecewisely smoothly
(or zigzag) distributed through the thickness of a laminated piezo-
electric plate. Accordingly, more efficient and reliable theories to
improve these assumptions have been desirable for analyzing the
electromechanicaland thermomechanical problems.

In recent developments, asymptotic theories have been proposed
for elastic plates,'®~!'5 piezoelectric plates,’™ '!7 and circular
cylindrical elastic shells.!® An important result is that solutions of
the three-dimensional equations may be generated by solving two-
dimensional equations hierarchically. There is no need for making
any assumptions a priori. The present paper intends to establish an
asymptotic theory for laminated circular cylindrical piezoelectric
shells.

II. State-Space Equations
The linear constitutiveequations of a piezoelectric medium are'®

T=c:S—¢ -E, D=e¢:S+k-E (1)

where 7 and S are the symmetric stress and strain tensors; D and E
the electric displacementand the electric field vectors; and c, e, and
k the elastic, piezoelectric, and dielectric moduli.

The equations of equilibrium and the charge equation in the ab-
sence of body forces and electric charge density are given in the
cylindrical coordinate system {r, 6, x} as

—1 —1 -1 —
r (rfrr).r +r Tro0 — 1 T + Trxx = 0
—2(,.2 —1
r (r Tre) LT Teep +Toxn =0

-1 —1 —
r (rfrx).r +r Tox,0 + Tyexx = 0

ril(rDr).r + r71D9.€ + Dx.x =0 (2)
The strain-displacementrelations and the electric field-potential
relations are
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— — 1 —1 _
Srr = Uy, SBB =T Ugy +r U, Sxx = Uy x

28 =ty F s 286 =r U + r(rflue)

T

2S9x = Ug x + rilux.b‘ﬂ Er = —9¢r

EB = _r71¢.€7 Ex = —Qx (3)

Consider a circular cylindrical piezoelectric panel of uniform
thickness & and inner radius ry, as shown in Fig. 1. The inner sur-
face of the panel is designated to be the reference surface. Let the
circumferential, axial, and normal length parameters be x; =r¢6,
X, =x, and x3 =r — ry, respectively.

Hereafter, a comma followed by a subscripti denotes the partial
derivative with respect to x;, and a repeated index, unless specified
otherwise, implies summation over the range of the index with Latin
indices ranging from 1 to 3 and Greek indices from 1 to 2.

For monoclinic piezoelectric materials with reflectional symme-
try in surfaces parallel to the surfaces of the circular cylindrical
shell, the following state-space equation may be formulated from

Eqgs. (1-3):
s | MR

Q;'F
! )
Top = (ror L0034 L453, )u,, + r~ Lol us + Mg 733 + M2 D,

0;'G

D, = J%1,; — (ror ™' K20, + K320, )9 5)
where ¢ = h/a, a is the circumferential length of the inner surface,
and

F = [u, D3]T7 G =13 @]T 6)

The 4 x 4 diagonal matrix A is denoted as A = diag[0, 0, 1, 0]. Q
and Qg, as well as their inverses @' and Q', are 4 x 4 diagonal
operator matrices defined by

Qr = diaglr0r~', Q,r~' 0r, ' 0r]

U 1733 T3 U3

Q¢ = diag[r>Qr*,r7'0r, 0, Q] (7
;' = diag[razr", 9, r='o.r, r*'azr]
Q' =diag[r=20.r%,r~'8,r,8,,9,] )
where
¢ ad
Q(~~~)E/ (- dz, 9. = — ©)
0 0z

and we have used the scaled thickness coordinate z = x3 /¢. Thus, z
varies from O to a as x; goes from0 to /. The 4 X 4 operator matrices
A and B contain the differential operator 3, = 3/, and depend on
zas
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A= 1 _r0r71J1 81 _Jzaz
—ror T3 —JT0, rir2Ky 10y +ror ' (Kip + K31)012 + Ky 0y,

B— |:—r§r2L“a“ —ror ™ (Li2 + L31)012 — L0

—ror"MlTal _MzTaz

The nonzero elements of the matrix P are only on the third row:
Py, = ()™ (ror™'Liydy + L135,)

Py = (er)"' M|, Py = (er)'M/? (11)
As defined in previous work,”~ the matricesI, N, Js, Mg, Kg,, and

Ly, are only related to the material properties:

I I Ci1313  C1323 - N N 3333 €333 -
== Ci1323 2323 ’ = ( )= es3  —ka
wl w2 | wa
(7" 1] = [0 1°epus]

[M}‘;‘l Mg2]2[0a533 €305 1N

1 _ pl2 _ g2l 2 _ go2
Ky, = K, = Kj, =0, Ky = Jg € + kgo

Lg;} = Capop — Mglcfifiwp - Mgzefiwp (12)

Other notationsinclude n = (¢r) 2L|{} and the Kroneckerdelta §,5.

III. Asymptotic Theory

To establish an asymptotic theory of successive approximations,
the functions F¥ and G are expandedin terms of the small thickness

parameter £ as
F = ef ™
_ 2n
HE I

n=0
Substituting Eq. (13) into Eq. (4) leads to the recurrence relations
as

(13)

leg(O) — 07 leg(n+ 1) — Bf(n) _ PTg(n)

Q;lf(o) :Ag(0)7 Q;lf(n+l) :Ag(n+l) +Pf(") + 7]Ag(n)

(n=0) (14

The electromechanical loads on the inner and outer surfaces of
the circular cylindrical panel are scaled to be

Tafﬁ(-xpv O) = qu;(xp), Tafﬁ(-xpv a) = szq;r(-xp) (15)

T33(x,, 0) = —’q; (x,), T3 (xp,a) = —&'qf (x,)  (16)

p(x,,0) =&’V (x,), px,,a)=eV*tx,) (7)

where qj, qf, and V* are the tangential tractions, the normal pres-

sures, and the electric potentials applied on the shell surfaces.
Integrating Eqgs. (14) with respect to z and considering Eqs. (15-

17) for the bottom surface yields

Fig.1 Geometry of a circular cylindrical shell.

—r0r71M181 —M282i| (10)

N
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71 —
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V=é.0
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Uz( ) ZazU3( )
0

I_ ror~! D(()O) J

-1 (n+1)
ro ryU,

n+1)
UZ

f(O) —

ForD = +QF(Ag(”+')+Pf(”)+nfig(”))

71 —
—ror ™ q5 8,0

ror"Dé”“)

(n=0) (18)
The basicunknowns are the mechanicaldisplacementsand the elec-
tric displacement at the reference surface z = 0 of the shell:

U™ =u®(x,,0), D" =D{"(x,.07) (19
These unknowns remain to be determined such that the conditions
(15-17) for the tractions and the electric potential on the outer
surface z =a are satisfied.

According to Egs. (18), f* and g!" can be alternatively written

as
f(n) =X" 4+ H™, g;’?) — U3(") + H™ (20)
where
ro"rUl(") —z0 U3(")
xX™ — Uy =z, U HO — ¢ HO —
0
rOr*'Dé”)
rir2q; 0
1) ror~'q; 0
HO D =5,01004| 70 "0 | | ©
R
V- 0
+0QrAQ; (Bf" — PTg™) + @ (Pf™ + nAg™)
H"D = Q(By f;" — Phel”)  (n=0) (1)

and where an uppercase subscript L takes the values from 1 to 4 and
the implicit summation convention applies as usual.
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When the integral operator is denoted
Q'(---)zf (+0dz (22)
0

the following matrix equation is derived through Eqs. (21) and
the traction and electric potential conditions (15-17) for the outer
surface:

RX™ =§,)Y — RH™ + TH™ (23)
where
o n n n T
x»=[uv" v uv” D] (24)

The expressions of the components of the operator matrices R.R,
and T are givenin the Appendix. The componentsof Y on the right-
hand side of Eq. (23) contain the electromechanicalloads as

Y1:(1+hr51)2ql+—ql’, Y2=(1+hr0’1)q2+—q;

Yy=—(1+hry")gS + a5 + (14 hry")adg)
Y,=V*t—V- (25)

Equation (23) is the field equation established in the asymp-
totic theory. The unknowns (24) of each order remain to be solved
with specified edge conditions. Because H® =0, H® =0, and Y
is known as in Eq. (25) a priori, the leading-order unknowns can
be determined from the leading-orderfield equation. Then H" and
H® can be obtained from Egs. (20) and (21). Such a procedure
may be continued to solve higher-orderunknowns. Because the op-
erator matricies R, R, and T involved in Eq. (23) do not change
their forms in the field equations of any order, this makes the so-
lution procedure easier. On the basis of this asymptotic theory, a
numerical method may be developed to successively solve the two-
dimensional equations with the same operator matrices and then to
generate three-dimensionalsolutions.

IV. Examples
A circular cylindrical panel with central angle ® and axial length
L, is consideredin the following illustrativeexamples. The nonzero
electromechanicalloads are only applied on the outer surface as

gy = g5 sinlx; sinlyx,, Vt=—V*tsinlx sinhx, (26)

where
a=ryd @7

ll:f[/a7 12:7'[/[42,

and a quantity with a superimposed hat denotes the amplitude of
the corresponding physical quantity. The mechanical and electrical
boundary conditions for simply supported edges

Uy =u3 =71, =¢=0 at x; =0,a
M1:M3:‘Ezz:§0:0 at XZZO,LZ (28)

can be satisfied by assuming

Ul(”) Uf”) coslyx; sinlyx,
(n) ()

0 — U, _ l{z sinl,x; coslyx, 29)

U;") U3(") sinl x; sinl,x,

I_D(()")J ﬁé") sinl;x; sin lzxZJ
The physical quantities are nondimensionalizedby
it =i;/PL,, T, =1t,;/Pc*

g=e¢/PLc", D, =D,/ Pe* (30)

where either P = g3 /c* for applied load ¢; or P =V*(e*/Lc*)
for applied potential V™. L, =R® and R=r;,+h/2 are the
circumferential length and radius of the middle surface.

Three different materials are used to examine the presentasymp-
totic theory. They are polyvinylidenefluoride (PVDF1 and PVDF2)
and lead zirconate titanate (PZT-4), and their material moduli are
given in Table 1.20-22

The present results for an infinitely long single-layer circular
cylindrical (PVDF1) piezoelectric panel (& = /3) are compared
with the available exact solution®® in Tables 2 and 3, for which
¢*=2 GPa and e* =0.06 C/m* have been taken. Selected results
for the radius-to-thickness ratio R/h =4 and 10 are given. The
leading-order, first-order, and second-order solutions are listed in
comparisonwith the convergedhigher-ordersolutionthatis accurate
to four significant digits. The converged orders are shown to be the
fifth order and third order for R/h =4 and 10 under the mechanical
load, and fifth order and fourth order for R/h =4 and 10 under
the electric load. Thus, subsequent higher-order solutions are not
necessary. As observed, the converged solutions are in excellent
agreement with the exact results. The present asymptotic theory
provides fast convergence for the considered example, for which
the second-order solution already gives good approximations.

The second example presents the electromechanical analysis
of a four-ply (0-deg PVDF2/PZT-4/90-deg PVDF2/PZT-4 starting
from the outer ply) laminated circular cylindrical panel (& = 7/3,

Table 1 Material moduli

Moduli PVDF1 PZT-4 PVDF2
ci1i1, GPa 3 139 238.24
C2222, GPa 3 139 23.6
C3333, GPa 3 115 10.64
1122, GPa 1.5 77.8 3.98
1133, GPa 1.5 74.3 2.19
C2233, GPa 1.5 74.3 1.92
C2323, GPa 0.75 25.6 2.15
c3131, GPa 0.75 25.6 4.4
1212, GPa 0.75 30.6 6.43
e311, C/m? 0.0285 -52 —0.13
322, C/m? —0.0015 -52 —0.145
e333, C/m? —0.051 15.1 —-0.276
ex3, C/m? 0 12.7 —0.009
e113, C/m? 0 12.7 —0.135
ki /K3 106.2/ ko 1475 12.5
koo /K 106.2/ ko 1475 11.98
k33 / k3 106.2/ ko 1300 11.98

4Here ko = 8.854185 pF/m.
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Fig.2 Through-the-thickness distribution of the deflection for a four-
ply laminated circular cylindrical panel under electric load (® = /3,
R/h=20,and Ly/L, =1).
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Table 2 Comparison of the present results with exact solution for an infinitely long
single-layer piezoelectric circular cylindrical panel under mechanical load (® =7/3)

Order iy (0) i (h/2)  Te(0)  Tp(h/2)  @(h/2) Dy(h/2) D, (0%)
R/h=4
0 —7.479 —11.22 15.28 0 0 0 0.512
1 —7.990 —12.90 15.58 —-2.507 0.010634 —1.971 1.077
2 —8.000 —12.90 15.58 —2.495 0.009260 —1.716 1.017
5 —8.000 —12.90 15.58 —2.495 0.009331 —1.729 1.020
Exact?® —8.000 —12.90 15.58 —2.495 0.009331 —1.730 1.020
R/h=10
0 —76.94 —164.9 82.77 0 0 0 1.1043
1 —78.03 —168.8 83.03 —5.897 0.02496 —4.626 0.7900
2 —78.08 —168.9 83.04 —5.893 0.02444 —4.531 0.7829
3 —78.08 —168.9 83.04 —5.893 0.02445 —4.531 0.7830
Exact?® —78.08 —168.8 83.04 —5.893 0.02445 —4.531 0.7830

Table3 Comparison of the present results with exact solution for an infinitely long
single-layer piezoelectric circular cylindrical panel under electric load (© = 7/3)

Order iy (0) ity (h/2) Tgo (h) To(h/4)  @h/2)  Dg(h)y D, (0F)
R/h=4
0 —1.1937 —0.3979 0 0 0 0 286.7
1 —0.5274 0.4973 —0.3043 0.00000 —0.5313 164.8 260.1
2 —0.5519 0.4752 —0.3341 0.02504 —0.4959 164.8 261.8
5 —0.5511 0.4758 —0.3315 0.02569 —0.4978 164.8 261.7
Exact?® —0.5512 0.4760 —0.3314 0.02569 —0.4978 164.8 261.7
R/h=10
0 —-2.997 —0.9992 0 0 0 0 663.1
1 —2.207 0.6386 —0.1360 0.000000 —0.5125 176.5 653.3
2 —-2.210 0.6340 —0.1409 0.004087 —0.5069 176.5 653.4
4 —2.210 0.6340 —0.1408 0.004172 —0.5070 176.5 653.4
Exact?® —-2.210 0.6340 —0.1408 0.004172 —0.5070 176.6 653.3
wy el
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Fig.3 Through-the-thickness distribution of the electric potential for
a four-ply laminated circular cylindrical panel under electric load
(® =7/3,RIh=20,and Ly/L, = 1).

R/h=20,and L,/L, =1). The panel has equal ply thickness and
finite axial length. The dimensionless values are also defined by
Eq. (30), where ¢* =1 GPa and e* = 1 C/m?.

Figure 2 shows the through-thicknessdistribution of the deflec-
tion of the circular cylindrical panel under the electric voltage. The
distribution is approximately piecewise linear through the entire
plate thickness. More specifically, the deflection is approximately
constant through the thickness of each PZT-4 layer, whereas it is
approximately linearly distributed through the thickness of each
PVDF?2 layer.

The through-thicknesselectricpotentialfor the laminated circular
cylindrical panel under the electric load is presented in Fig. 3. It is

Fig. 4 Through-the-thickness distribution of the amplitude ratio of
the circumferential to transverse electric field components for a four-
ply laminated circular cylindrical panel under electric load (® = 7/3,
R/h=20,and Ly/L, = 1).

appropriateto make an assumptionof a piecewise linear distribution
of the electricpotentialthroughthe thicknessof a circularcylindrical
shell in the case of an applied electric voltage.

As revealed earlier in the plate analyses,">~® the assumption of
negligible in-plane electric field components is not valid in some
cases. That is because the in-plane electric field components, when
compared with the transverseelectricfield, are of the order of the re-
ciprocal of the plate thickness parameter. The numerical result given
in Fig. 4 for the through-thickness distribution of E,/E, clearly
demonstrates that such a conclusion also applies to the circular
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Fig.5 Through-the-thickness distribution of the deflection for a four-
ply laminated circular cylindrical panel under a) mechanical load and
b) electric load (® =7/3, R/h =20, and Ly/L; = 1).

cylindrical panel. Although the in-plane electric field component
is negligibly small in three layers, it is more significant than the
transverse electric field componentin one PZT-4 layer. The discon-
tinuity of the curve through the thicknessis due to the discontinuity
of the transverse electric field component.

The through-thickness distributions of the transverse shear and
normal stresses are given in Figs. 5a and 5b for the cases of ap-
plied mechanical load and applied electric load, respectively. The
linear superposition principle applies to the problem so that results
due to combined loads may be obtained through respective solu-
tion due to simple loading. Therefore, according to Figs. 5a and
5b, the interfacial shear stresses 7,4 and t,, can be reduced in a
controlled manner by properly applied electromechanical loads to
prevent possible premature shearing delamination.

V. Conclusions

An asymptotic theory has been presented for laminated cir-
cular cylindrical piezoelectric shells in the framework of three-
dimensional electroelasticity. Solutions can be obtained using a re-
currence procedureto desired accuracy for the interiorsof the shells.
The present results show excellent agreement with the available
exact solution. The graphical results provide guidance for making
appropriate assumptions in developing new theories.

Appendix: Expressions of the Operator Components

R
Ris
R4
RZZ

é23

1%24

R33

R33

Ry

= —ro’l QrLHa“ — 2r0’2Qr2L{£812 — r0’3Qr3L£822
=—QL}}3, — rO’lQr(Li% + Léé)aﬂ - r(;ZQrZLgaﬂ

= QzL} i + 0z(1 + 21y r) L13o11a

+r;! QZF[LE + (1 + ro’lr)Léé]am + 12 Qzr’ LYo — T
= —QMIIZBI - rO’IQerlzaz

=—roQr 'L13,, —20L323,, —ry ' OrLEd,

= r0Q2771L1£3111 + QZ[(I + roril)LZ + Lig]a“z
+0z(24 7y ') L0 + 1y Q2r L8y, — T

= —rOQr’lMlzzal — QMZZZBZ

=ro Q4 r LN, + 2Q22(1 + rorfl)Liéamz
+Qz2[2Li§ + (2 +ror”' + r(;lr)LZ]anzz

+2Q22(1 + r(;lr)Lﬁalzzz + 7, 02 r LY 3

=2T; — s’er’IQr’ILH

= —r0Qzr'M23;, — 0z(1 +ror ') M3,

- QzMzzzazz + T,

= roOr ' N2

=Ry, Ry = —Ras, Riw = Rua, Ris=—Ry
=—0LN3, —2r;' QrLl 8, — ry20r?Lilay,

=Ry,

5= —r(;'Qer“al —rO’ZQrZMz“az

= —ro’l Qer'Zal - rO’ZQrZlezaz
=—rQr'L28;, — Q(L13 + L1})dy, — ry ' OrL 2,

= R22

3= —QMIZIBI - rO’IQrMZZIBZ

= —QMIZZBI - rO’IQerzzaz

= —rQzr Lo — 0z(2+ rorfl)Liéanz

= QL+ (147 'r) L3300 — 15! Qar LYo
+e'Or ' Lo, + &7y ' OL1G,

=Ry

=—0zM'3;, — Qz(1 +ry'r) M} 9,

—ry! erMZZIBZZ +e'lry! QMl“

=—0zM 23, — Qz(1 +ry'r)M}?d,,

—ry! erMZZZBZZ +e'lry! QMI12

= —rOQr’lMllzal — QMZIZBZ

=Ry,
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R43 = QNZI

Ry = ON*

T =e'rg QL8+ 'rg 2 Or L1Lo,

T,=e"'Or 'L33, + e 'r; ' OL}%3,

Ty=e'Qzr ' Lijon + & 'ry ' Qz(1 +ror ™) Lidon
+e7 'y Q2L 30y — e ry  Or 'Ly

T4 — 8—1 Qr71M112
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